Statistical Analysis Techniques for Logic and Memory Circuits

نویسندگان

  • Qunzeng Liu
  • Sachin S. Sapatnekar
چکیده

Process variations have become increasingly important as feature sizes enter the sub100nm regime and continue to shrink. Both logic and memory circuits have seen their performance impacted due to these variations. It is increasingly difficult to ensure that the circuit manufactured is in accordance with the expectation of designers through simulation. For logic circuits, general statistical static timing analysis (SSTA) techniques have emerged to calculate the probability density function (PDF) of the circuit delay. However, in many situations post-silicon tuning is needed to further improve the yield. For memory circuits, embedded DRAM (eDRAM) is beginning to replace SRAM as the on-die cache choice in order to keep the scaling trend. Although techniques exist for statistical analysis of SRAM, detailed analysis of eDRAM has not been developed prior to this thesis. In this thesis, we provide techniques to aid statistical analysis for both logic and memory circuits. Our contribution in the logic circuits area is to provide robust and reliable, yet efficient post-silicon statistical delay prediction techniques for estimating the circuit delay, to replace the traditional critical path replica method that can generate large errors due to process variations during the manufacturing process. We solve this problem from both the analysis perspective and the synthesis perspective. For the analysis problem, we assume that we are given a set of test structures built on chip, and try to get the delay information of the original circuit through measurement of these test structures. For the synthesis problem, we automatically build a representative critical path which maximally correlate with the original circuit delay. Both of these approaches are derived using variation aware formula and use SSTA as sub-steps. They capture the delay variation of the original circuit better than the traditional critical path replica approach and eliminates the need to perform full chip testing for the post-silicon tuning purpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)

Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...

متن کامل

Efficient Delay Characterization Method to Obtain the Output Waveform of Logic Gates Considering Glitches

Accurate delay calculation of circuit gates is very important in timing analysis of digital circuits. Waveform shapes on the input ports of logic gates should be considered, in the characterization phase of delay calculation, to obtain accurate gate delay values. Glitches and their temporal effect on circuit gate delays should be taken into account for this purpose. However, the explosive numbe...

متن کامل

Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops

All practical digital circuits are usually a mixture of combinational and sequential logic. Flip–flops are essential to sequential logic therefore fuzzy flip–flops are considered to be among the most essential topics of fuzzy digital circuit. The concept of fuzzy digital circuit is among the most interesting applications of fuzzy sets and logic due to the fact that if there has to be an ultimat...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010